III Semester M.Sc. Degree Examination, December 2016 (RNS) (Y2K11 Scheme) (Repeaters) MATHEMATICS

M 301 : Topology - II

Time: 3 Hours Max. Marks: 80

Instructions: i) Answer **any five** questions choosing atleast **two** questions from **each** Part.

ii) All questions carry equal marks.

PART – A

1.	a)	Show that if $A \subseteq (y, \tau^*) \subseteq (X, \tau)$ then A is τ^* compact iff A is τ -compact.	4
		Define compact space. Prove that if (x, τ) is compact iff every family of	8
	c)	Prove that if every countable open cover of (X, τ) has a finite subcover then X is countably compact.	4
2.	a)	Prove that every second axiom space is a first axiom space and hence show that converse is false.	6
	b)	Prove that Lindeloff property is topological.	4
	c)	Show that a compact metric space is totally bounded. Is the converse false? Justify your answer.	6
3.	a)	Show that a mapping $f:Z\to X\times Y$ is continuous iff Π_x of and Π_y of are continuous.	5
	b)	Show that $X \times Y$ is first countable iff X and Y are first countable.	4
	c)	Prove that if A is closed in (X, τ) and B is closed in (Y, τ) then A × B is closed in the product topology and conversely.	7
4.	a)	Prove that an infinite set with the co-finite topology is a T ₁ -space.	4
		Define T ₂ -space. Show that T ₁ -space does not implies T ₂ -space.	5
		Show that a compact subset of a Hausdorff space is closed.	7

PART-B

5.	a)	Define a T ₃ -space. Prove that every metric space is a T ₃ -space.	8
	b)	Prove that T ₃ -space is both topological and hereditary.	8
6.	a)	Define a normal space. Prove that a metric space is normal and hence T_4 -space.	8
	b)	Prove that a compact Hausdorff space is normal.	8
7.	a)	Prove that a completely regular space is a regular space.	4
	b)	State and prove Urysohn's lemma.	12
8.	a)	Show that the space (X, $ au$) is completely normal iff every subspace is normal.	8
	b)	Prove that a regular Lindeloff space is normal.	8